Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLOS Digit Health ; 2(3): e0000199, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36913342

RESUMO

The COVID-19 pandemic has spurred an unprecedented demand for interventions that can reduce disease spread without excessively restricting daily activity, given negative impacts on mental health and economic outcomes. Digital contact tracing (DCT) apps have emerged as a component of the epidemic management toolkit. Existing DCT apps typically recommend quarantine to all digitally-recorded contacts of test-confirmed cases. Over-reliance on testing may, however, impede the effectiveness of such apps, since by the time cases are confirmed through testing, onward transmissions are likely to have occurred. Furthermore, most cases are infectious over a short period; only a subset of their contacts are likely to become infected. These apps do not fully utilize data sources to base their predictions of transmission risk during an encounter, leading to recommendations of quarantine to many uninfected people and associated slowdowns in economic activity. This phenomenon, commonly termed as "pingdemic," may additionally contribute to reduced compliance to public health measures. In this work, we propose a novel DCT framework, Proactive Contact Tracing (PCT), which uses multiple sources of information (e.g. self-reported symptoms, received messages from contacts) to estimate app users' infectiousness histories and provide behavioral recommendations. PCT methods are by design proactive, predicting spread before it occurs. We present an interpretable instance of this framework, the Rule-based PCT algorithm, designed via a multi-disciplinary collaboration among epidemiologists, computer scientists, and behavior experts. Finally, we develop an agent-based model that allows us to compare different DCT methods and evaluate their performance in negotiating the trade-off between epidemic control and restricting population mobility. Performing extensive sensitivity analysis across user behavior, public health policy, and virological parameters, we compare Rule-based PCT to i) binary contact tracing (BCT), which exclusively relies on test results and recommends a fixed-duration quarantine, and ii) household quarantine (HQ). Our results suggest that both BCT and Rule-based PCT improve upon HQ, however, Rule-based PCT is more efficient at controlling spread of disease than BCT across a range of scenarios. In terms of cost-effectiveness, we show that Rule-based PCT pareto-dominates BCT, as demonstrated by a decrease in Disability Adjusted Life Years, as well as Temporary Productivity Loss. Overall, we find that Rule-based PCT outperforms existing approaches across a varying range of parameters. By leveraging anonymized infectiousness estimates received from digitally-recorded contacts, PCT is able to notify potentially infected users earlier than BCT methods and prevent onward transmissions. Our results suggest that PCT-based applications could be a useful tool in managing future epidemics.

2.
Front Artif Intell ; 3: 564878, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33733210

RESUMO

Flavescence dorée (FD) is a grapevine disease caused by phytoplasmas and transmitted by leafhoppers that has been spreading in European vineyards despite significant efforts to control it. In this study, we aim to develop a model for the automatic detection of FD-like symptoms (which encompass other grapevine yellows symptoms). The concept is to detect likely FD-affected grapevines so that samples can be removed for FD laboratory identification, followed by uprooting if they test positive, all to be conducted quickly and without omission, thus avoiding further contamination in the fields. Developing FD-like symptoms detection models is not simple, as it requires dealing with the complexity of field conditions and FD symptoms' expression. To address these challenges, we use deep learning, which has already been proven effective in similar contexts. More specifically, we train a Convolutional Neural Network on image patches, and convert it into a Fully Convolutional Network to perform inference. As a result, we obtain a coarse segmentation of the likely FD-affected areas while having only trained a classifier, which is less demanding in terms of annotations. We evaluate the performance of our model trained on a white grape variety, Chardonnay, across five other grape varieties with varying FD symptoms expressions. Of the two largest test datasets, the true positive rate for Chardonnay reaches 98.48% whereas for Ugni-Blanc it drops to 8.3%, underlining the need for a multi-varietal training dataset to capture the diversity of FD symptoms. To obtain more transparent results and to better understand the model's sensitivity, we investigate its behavior using two visualization techniques, Guided Gradient-weighted Class Activation Mapping and the Uniform Manifold Approximation and Projection. Such techniques lead to a more comprehensive analysis with greater reliability, which is essential for in-field applications, and more broadly, for all applications impacting humans and the environment.

3.
Front Plant Sci ; 10: 941, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396250

RESUMO

Deep learning techniques, and in particular Convolutional Neural Networks (CNNs), have led to significant progress in image processing. Since 2016, many applications for the automatic identification of crop diseases have been developed. These applications could serve as a basis for the development of expertise assistance or automatic screening tools. Such tools could contribute to more sustainable agricultural practices and greater food production security. To assess the potential of these networks for such applications, we survey 19 studies that relied on CNNs to automatically identify crop diseases. We describe their profiles, their main implementation aspects and their performance. Our survey allows us to identify the major issues and shortcomings of works in this research area. We also provide guidelines to improve the use of CNNs in operational contexts as well as some directions for future research.

4.
IEEE Trans Image Process ; 24(1): 359-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25494507

RESUMO

Foreground/background segmentation via change detection in video sequences is often used as a stepping stone in high-level analytics and applications. Despite the wide variety of methods that have been proposed for this problem, none has been able to fully address the complex nature of dynamic scenes in real surveillance tasks. In this paper, we present a universal pixel-level segmentation method that relies on spatiotemporal binary features as well as color information to detect changes. This allows camouflaged foreground objects to be detected more easily while most illumination variations are ignored. Besides, instead of using manually set, frame-wide constants to dictate model sensitivity and adaptation speed, we use pixel-level feedback loops to dynamically adjust our method's internal parameters without user intervention. These adjustments are based on the continuous monitoring of model fidelity and local segmentation noise levels. This new approach enables us to outperform all 32 previously tested state-of-the-art methods on the 2012 and 2014 versions of the ChangeDetection.net dataset in terms of overall F-Measure. The use of local binary image descriptors for pixel-level modeling also facilitates high-speed parallel implementations: our own version, which used no low-level or architecture-specific instruction, reached real-time processing speed on a midlevel desktop CPU. A complete C++ implementation based on OpenCV is available online.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA